4 research outputs found

    Noise in homodyne detection

    Get PDF
    A simple but rigorous analysis of the important sources of noise in homodyne detection is presented. Output noise and signal-to-noise ratios are compared for direct detection, conventional (one-port) homodyning, and two-port homodyning, in which one monitors both output ports of a 50-50 beam splitter. It is shown that two-port homodyning is insensitive to local-oscillator quadrature-phase noise and hence provides (1) a means of detecting reduced quadrature-phase fluctuations (squeezing) that is perhaps more practical than one-port homodyning and (2) an output signal-to-noise ratio that can be a modest to significant improvement over that of one-port homodyning and direct detection

    Scientific applications of frequency-stabilized laser technology in space

    Get PDF
    A synoptic investigation of the uses of frequency-stabilized lasers for scientific applications in space is presented. It begins by summarizing properties of lasers, characterizing their frequency stability, and describing limitations and techniques to achieve certain levels of frequency stability. Limits to precision set by laser frequency stability for various kinds of measurements are investigated and compared with other sources of error. These other sources include photon-counting statistics, scattered laser light, fluctuations in laser power, and intensity distribution across the beam, propagation effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of science experiments that rely on highly precise measurements made with lasers are analyzed, and anticipated errors and overall performance are discussed. Qualitative descriptions are given of a number of other possible science applications involving frequency-stabilized lasers and related laser technology in space. These applications will warrant more careful analysis as technology develops

    Astrophysical Adaptation of Points, the Precision Optical Interferometer in Space

    Get PDF
    POINTS (Precision Optical INTerferometer in Space) would perform microarcsecond optical astrometric measurements from space, yielding submicroarcsecond astrometric results from the mission. It comprises a pair of independent Michelson stellar interferometers and a laser metrology system that measures both the critical starlight paths and the angle between the baselines. The instrument has two baselines of 2 m, each with two subapertures of 35 cm; by articulating the angle between the baselines, it observes targets separated by 87 to 93 deg. POINTS does global astrometry, i.e., it measures widely separated targets, which yields closure calibration, numerous bright reference stars, and absolute parallax. Simplicity, stability, and the mitigation of systematic error are the central design themes. The instrument has only three moving-part mechanisms, and only one of these must move with sub-milliradian precision; the other two can tolerate a precision of several tenths of a degree. Optical surfaces preceding the beamsplitter or its fold flat are interferometrically critical; on each side of the interferometer, there are only three such. Thus, light loss and wavefront distortion are minimized. POINTS represents a minimalistic design developed ab initio for space. Since it is intended for astrometry, and therefore does not require the u-v-plane coverage of an imaging, instrument, each interferometer need have only two subapertures. The design relies on articulation of the angle between the interferometers and body pointing to select targets; the observations are restricted to the 'instrument plane.' That plane, which is fixed in the pointed instrument, is defined by the sensitive direction for the two interferometers. Thus, there is no need for siderostats and moving delay lines, which would have added many precision mechanisms with rolling and sliding parts that would be required to function throughout the mission. Further, there is no need for a third interferometer, as is required when out-of-plane observations are made. An instrument for astrometry, unlike those for imaging, can be compact and yet scientifically productive. The POINTS instrument is compact and therefore requires no deployment of precision structures, has no low-frequency (i.e., under 100 Hz) vibration modes, and is relatively easy to control thermally. Because of its small size and mass, it is easily and quickly repointed between observations. Further, because of the low mass, it can be economically launched into high Earth orbit which, in conjunction with a solar shield, yields nearly unrestricted sky coverage and a stable thermal environment

    Noise in homodyne detection

    No full text
    corecore